Molecular Basis of Lysosomal Enzyme Recognition: Three-Dimensional Structure of the Cation-Dependent Mannose 6-Phosphate Receptor
نویسندگان
چکیده
Targeting of newly synthesized lysosomal hydrolases to the lysosome is mediated by the cation-dependent mannose 6-phosphate receptor (CD-MPR) and the insulin-like growth factor II/cation-independent mannose 6-phosphate receptor (IGF-II/CI-MPR). The two receptors, which share sequence similarities, constitute the P-type family of animal lectins. We now report the three-dimensional structure of a glycosylation-deficient, yet fully functional form of the extracytoplasmic domain of the bovine CD-MPR (residues 3-154) complexed with mannose 6-phosphate at 1.8 A resolution. The extracytoplasmic domain of the CD-MPR crystallizes as a dimer, and each monomer folds into a nine-stranded flattened beta barrel, which bears a striking resemblance to avidin. The distance of 40 A between the two ligand-binding sites of the dimer provides a structural basis for the observed differences in binding affinity exhibited by the CD-MPR toward various lysosomal enzymes.
منابع مشابه
Proteolytic Characterization and Lysosomal Localization of Echinoderm Cathepsin D
Cathepsin D is an important lysosomal aspartic protease and is transported to the lysosomes in both mannose 6-phosphate dependent and independent manner. The present study reports lysosomal transport and proteolytic characterization of cathepsin D purified from gonads of starfish Asterias Rubens. Activity of the purified enzyme was confirmed by a zymogram assay on hemoglobin. Characterization o...
متن کاملStructural basis for recognition of phosphodiester-containing lysosomal enzymes by the cation-independent mannose 6-phosphate receptor.
Mannose 6-phosphate (Man-6-P)-dependent trafficking is vital for normal development. The biogenesis of lysosomes, a major cellular site of protein, carbohydrate, and lipid catabolism, depends on the 300-kDa cation-independent Man-6-P receptor (CI-MPR) that transports newly synthesized acid hydrolases from the Golgi. The CI-MPR recognizes lysosomal enzymes bearing the Man-6-P modification, which...
متن کاملMouse mutants lacking the cation-independent mannose 6-phosphate/insulin-like growth factor II receptor are impaired in lysosomal enzyme transport: comparison of cation-independent and cation-dependent mannose 6-phosphate receptor-deficient mice.
Two proteins have been implicated in the mannose 6-phosphate-dependent transport of lysosomal enzymes to lysosomes: the 300kDa cation-independent and the 46kDa cation-dependent mannose 6-phosphate receptors (CI- and CD-MPRs). The mammalian CI-MPR also mediates endocytosis and clearance of insulin-like growth factor II (IGF-II). Mutant mice that lack the CD-MPR are viable, mice that lack the CI-...
متن کاملMice lacking mannose 6-phosphate uncovering enzyme activity have a milder phenotype than mice deficient for N-acetylglucosamine-1-phosphotransferase activity.
The mannose 6-phosphate (Man-6-P) lysosomal targeting signal on acid hydrolases is synthesized by the sequential action of uridine 5'-diphosphate-N-acetylglucosamine: lysosomal enzyme N-acetylglucosamine-1-phosphotransferase (GlcNAc-1-phosphotransferase) and GlcNAc-1-phosphodiester alpha-N-acetylglucosaminidase ("uncovering enzyme" or UCE). Mutations in the two genes that encode GlcNAc-1-phosph...
متن کاملThe N-terminal carbohydrate recognition site of the cation-independent mannose 6-phosphate receptor.
The 300-kDa cation-independent mannose 6-phosphate receptor (CI-MPR) plays a critical role in the trafficking of newly synthesized mannose 6-phosphate-containing acid hydrolases to the lysosome. The receptor contains two high affinity carbohydrate recognition sites within its 15-domain extracytoplasmic region, with essential residues for carbohydrate recognition located in domain 3 and domain 9...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cell
دوره 93 شماره
صفحات -
تاریخ انتشار 1998